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Abstract—In the telecommunication-filter design suit an 
important activity is to visualize the analog prototype transfer 
function (TF) synthesis results. That allows the designer to 
verify its design and to generate documents related to the 
pproper phase of the design process. In this paper part of the  
RM software will be described that performs generation of 
frequency and time domain responses given the TF of a filter.  
Programs for amplitude, attenuation, phase, and group delay 
responses will be described for the frequency domain 
encompassing low-pass, band-pass, band-reject, high-pass and 
all-pass filters. Programs for drawing the time domain 
responses including Dirac and Heaviside excitations will be 
described for low-pass filters only. A main program enabling 
repetitive use of the TF analysis data for generation different 
drawn characteristics will be described too.  

 
Index Terms—Filter design, graphics, time domain, 

frequency domain  

I. INTRODUCTION 

Telecommunication filters are perpetual challenge for the 
designers since the very start of the technology [1] [2]. 
Having an integrated design tool that covers all phases of 
the design for the most of popular technologies (Passive LC, 
active RC, active SC and digital IIR) is a challenge above 
all.  It is our intention to develop such a system. Here we do 
report some of the results already achieved. 

As depicted in Fig. 1., the design process encompasses 
several phases every and each of them needing a verification 
tool. Here we describe a small segment of a design system 
named RM which is devoted to the verification of the 
synthesis process of the transfer function in the s-domain. It 
covers frequency and time domain characterization of the 
synthesis process for both baseband and transformed 
functions. The activities described in this paper are marked 
by proper gray background in the "graphic verification" 
boxes of Fig. 1. 

The paper consists of two main parts. In the second 
section we will give a complete set of mathematical 
expressions used for the computations for both frequency 
and time domain. Than, in the third section we will select a 
low-pass transfer function and illustrate the results that may 
be produced by the RM software in cases of low-pass, high-
pass, band-pass and  band-stop transfer functions, the later 
three obtained by proper transformation during the synthesis 
process. 

Note, to the RM software it is irrelevant the way of how 
the input data for drawing were generated. 
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Figure 1. The filter design suite 
 

II. COMPUTATIONS 

We will first give the formulae used for the computation 
implemented in generation the graphics. The transfer 
function (TF) of a filter may be expressed as follows: 
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Here s is the complex frequency: jωσ s . The imagi-

nary part of the complex frequency is usually referred to as 
the real angular frequency while here the word "real" will be 
omitted. It is related to the frequency of the sinusoidal signal 
by: ω=2πf. Note, normalized frequencies will be used in the 
rest of the text. These are the ones obtained by division of 
the frequency by a normalization constant here appropriately 

denoted by ωn or fn.  
The zeros of the TF (or the transmission zeros) are 

denoted by zk=αk+jβk, k=1,2,..., n, while the poles of the TF 
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are denoted as pi=γi+jδi, i=1,2,...,m. m is the order of the 
filter and m≥n. 

Usually unity nominal gain is sought so that the constant 

A0 is computed as follows. For low-pass filters and band-
stop filters having the lower part of the pass-band as a 
normalization region, we use 
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For band-pass filters we use: 
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assuming the center frequency of the pass-band is 
normalized to unity. 

And, for high-pass filters and bans-stop filters having the 
upper part of the pass-band as a normalization region we use 

(1c)  10 A .  

On the axis of real frequencies or for s=jω, the amplitude 
characteristic is computed as follows: 
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If semi-log drawings are used the amplitude characteristic 
is expressed in decibels according to: 
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while the attenuation characteristic is obtained from: 
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The general expression for the phase characteristic is 
given by 
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The very computation of the phase angle deserves some 
additional attention. Namely, all four quadrants are to be 
considered in every single summand in the above 
expression. For example, if both the nominator and the 
denominator are negative, the summand vector is pointing to 
the third quadrant so that its contribution to the phase is 

calculated as:  ./π rdenominatonominatorarctg  

The group delay is obtained from the following 
expression 
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The response to a Dirac pulse (or the pulse response) was 

calculated for functions having simple poles only by the 
formula: 
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The response to a step or Haeviside function is obtained 

from (9) but the transfer funcion is changed so that a new 
pole is added being located in the origin. In other words 
instead of (1) one will use  
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which means that the number of summands in the second 
sum in (9) will be risen by one due to the new pole: 

pn+1=0+j0. 
The time domain responses were computed for low pass 

TFs only. 

III. A CASE STUDY 

A set of programs were written to calculate and draw the 
characteristics of the just synthesized filters. 

First, a program named TF-ANALYSIS is to be activated 
to create data for drawing. It recognizes automatically the 



 

type of the filter creating five categories: low-pass, band-
pass, band-stop, all-pass, and high-pass. Then it creates 
tables necessary for the drawings along with some 
additional data expressing the properties of the filter. Fig. 2. 
depicts part of the  TF-ANALYSIS's output file related to 
the frequency and step response of a low-pass filter. The 
poles and zeros of that filter were taken from [3] and will be 
consistently used throughout this paper. 
_____________________________________________ 
n=6,  m=8 
   zeroes: 
 sigma=[1]=0.000000 omega=[1]=1.729902  
 sigma=[2]=0.000000 omega=[2]=-1.729902  
 sigma=[3]=0.000000 omega=[3]=2.257123  
 sigma=[4]=0.000000 omega=[4]=-2.257123  
 sigma=[5]=0.745520 omega=[5]=0.433547  
 sigma=[6]=0.745520 omega=[6]=-0.433547  
   poles: 
 sigma=[1]=-0.112344 omega=[1]=1.251432 
 sigma=[2]=-0.112344 omega=[2]=-1.251432 
 sigma=[3]=-0.378511 omega=[3]=1.081092 
 sigma=[4]=-0.378511 omega=[4]=-1.081092 
 sigma=[5]=-0.590394 omega=[5]=0.648007 
 sigma=[6]=-0.590394 omega=[6]=-0.648007 
 sigma=[7]=-0.651984 omega=[7]=0.259692 
 sigma=[8]=-0.651984 omega=[8]=-0.259692 
  
 Residues in the poles 
 p1[ 1 ]= -0.107213 q1[ 1 ]= 0.117566 
 p1[ 2 ]= -0.107213 q1[ 2 ]= -0.117566 
 p1[ 3 ]= -0.056528 q1[ 3 ]= -0.935549 
 p1[ 4 ]= -0.056528 q1[ 4 ]= 0.935549 
 p1[ 5 ]= 1.102760 q1[ 5 ]= 4.054906 
 p1[ 6 ]= 1.102760 q1[ 6 ]= -4.054906 
 p1[ 7 ]= -0.939018 q1[ 7 ]= -6.943934 
 p1[ 8 ]= -0.939018 q1[ 8 ]= 6.943934 
****************************************** 
 The cut-off frequency defined by 5.000000 dB  
is equal to 1.295625 
 ****************************************** 
 delay time (at 0.5)=7.034871   
 rise time (0.1-0.9)=2.230270  
 ****************************************** 
 The number of oscillations at the beginning  

of the step response is=2 
 time=2.00  value of the extremum=0.015097 
 time=4.50  value of the extremum=-0.048887 
  ***************************************** 
The number of oscillations at the end  
of the step response is=11 
 time=9.534871   value=1.124995 
 time=12.034871   value=0.925926 
 time=14.534871   value=1.055869 
 time=17.034871   value=0.960861 
 time=19.534871   value=1.028600 
 time=22.034871   value=0.978794 
 time=24.534871   value=1.015970 
 time=27.034871   value=0.987934 
 time=29.534871   value=1.009116 
 time=32.134871   value=0.993160 
 time=34.634871   value=1.005170 
_________________________________________________ 
Figure 2. Part of the report created by TF-ANALYSIS for a low-pass filter 

 
The drawing program is written entirely in C++ language 

with use of the Eclipse development framework [4] and the 
graphics.h library [5]. Both are open source programs 
available to anyone. 

To allow the designer to have as a complete overview of 
the synthesis results as he needs, a separate interactive 
program was developed for the low-pass filters, which 
allows for repetitive generation of different drawings while 
using the same TF analysis output file. 

In the sequel we are depicting different drawing results 
obtained by the RM's graphic output for synthesis 
verification. 

It is worth mentioning that, in general,  the designer may 
control the width and the aspect ratio of the drawing. The 
examples below were created to fit into a two column paper 
as prescribed by ETRAN. 

 

 
 
Figure 3. Amplitude characteristic (top attenuation, bottom gain) 

 
Fig. 3. depicts two forms of presentation of the amplitude 

characteristic of a low pass filter. In the top part of the figure 
the attenuation is depicted. The term "normalized" used for 
the attenuation means that, before drawing, the gain at the 

origin was reduced to unity. In other words the value of A0 
in (1) was chosen so that T(0)=1. As can be seen the pass-
band is depicted in semi-log fashion while the stop-band 
uses log-log diagram. Note, the maximum pass-band 

attenuation (ap-max) is red by the program from the response 
table while the maximum normalized angular frequency 

(wmax) and maximum attenuation (as-max) in the stop-band 
are supplied by the user. The bottom part of Fig. 3. is related 
to the amplitude characteristic with the difference  that y-
axis is linear both in the pass-band and in the stop-band. 
Note, since usually the values of the stop-band amplitude 

are small, the program calculates (based on the value of as-

max) a multiplicative factor to enlarge the drawing. In Fig. 3. 
that multiplicative factor is shown to be 100. 



 

Since the attenuation characteristic is of prime importance 
an opportunity is given to the designer to obtain the value of 
the normalized angular frequency at which the attenuation 
reaches a prescribed value. Implementation of that part of 
the program is illustrated in Fig. 2. where the frequency is 
shown at which the attenuation reaches 5 dB (which is 
arbitrary).  

The next diagram (Fig. 4.) depicts the phase 
characteristic. Again two diagram may be created. 
 The first one depicts the phase in conjunction with the 
attenuation while the second is purely phase related. Instead 
of degrees, radians are drawn since that is the way how the 
arctg() function is working. The maximum value of the y-
axis of the phase drawing is found from the analysis data 
while the frequency band in which the phase will be 
depicted is to be supplied by the designer.  

 
 

 
Figure 4. Phase characteristic (top attenuation and phase, bottom phase 
alone) 

 
 One may say practically all the same for the Fig. 5. where 
the group delay of the filter is depicted. In the top part of the 
figure the group delay is given in conjunction with the 
attenuation characteristic while in the bottom one it is 
depicted alone. Again, the maximum value of the delay at 
the diagram is found by search of the analysis table while 
the bandwidth is to be supplied by the designer.  

It is important to note that the value of the group delay 
given in the drawings is normalized. That comes from the 
fact that the phase depicted in Fig. 4. was differentiated by 

the normalized frequency (ω=ωreal/ωnormalization) where 

ωnormalization usually is the filter's real cut-off frequency. 
That means that the real delay will be obtained after multi-
plication of the y-axis of the diagram of Fig. 4. by 

ωnormalization. 

 

 
Figure 5. Group delay characteristic (top attenuation and group delay, 
bottom group delay alone) 

 
 The response to the Dirac impulse may be presented by 
two drawings also as depicted in Fig. 6. Here the time axis is 
normalized which is equivalent to the delay normalization 
described above. 
 Similarly, the Heaviside or the step response may be 
depicted in two ways as shown by Fig. 7. The same stands 
for the normalization.  

Since the step response is of prime importance for 
characterization of a low-pass filter in the time domain, an 
opportunity is given to the designer to obtain the values of 
the coordinates of the extremal points of the step response. 
Implementation of that part of the program is illustrated in 
Fig. 2. where two tables are given one related to the 
oscillations at the beginning and the other to the oscillations 
to the end of the response. One may find from Fig. 2. that 
this filter exhibits an overshoot of  approximately 12.5% and 
an undershoot of approximately 9.3%. The normalized 
delay-time of the filter (measured as the distance from the 
origin to the point when the response reaches 50% of its 
value at infinity) may be read from Fig. 2. to be 
approximately 7.0 s. In the same time the rise-time of the 
filter (measured as the time needed for the response to rise 



 

from 0.1 to 0.9 of its final value) may be found to be 
approximately 2.2 s. 

 

 
Figure 6. Dirac pulse response (top attenuation and pulse response, bottom 
pulse response alone) 

 
 That ends the description of the results and the available 
graphical presentation of a low-pass filter. 
 In the RM software a routine was written to perform 
transformations from low-pass to a high-pass, band-pass, or 
band-stop (or band-reject) filter function. The transfor-
mation is performed on the poles an zeroes of the low-pass 
function which, in the case of low-to-band transformations, 
leads to a solution of a second order algebraic equation with 
complex coefficients. We implemented our own procedure 
which is, in general, similar to the one described in [6]. 
 Separate drawing programs were developed for the 
characteristics of the functions obtained by transformations. 
To begin with, Fig. 8. represents the attenuation cha-
racteristic of a high-pass filter obtained by transformation of 
the poles and zeros of the one studied as low-pass above.  
As can be seen the drawing is simply inverted. The main 
difference is in the fact that now the pass-band is infinite so 
that one needs both: to use logarithmic scale and to limit the 
maximum frequency which will be presented on the 
drawing. The last one is supplied by the designer. The stop-
band is taken in geometric symmetry. So, if the pass-band is 
drawn up to ω=5 rad/s, the stop-band will be drawn from 
ω=0.2 rad/s. 

 

 
Figure 7. Heaviside response (top attenuation and pulse response, bottom 
step response alone) 

 

 
 
Figure 8. Attenuation characteristic of  the high-pass filter 

 
 Fig. 9 depicts the attenuation characteristic of a filter 
obtained by low-pass to band-pass transformation of the 
same prototype filter. It was created so that its new pass-
band to be half of the carrier frequency i.e. its relative 
bandwidth is BWr=0.5. In this figure the pass-band 
attenuation is shown in a different scale. Namely, the upper 
value of the pass-band drawing was restricted to 0.4 dB. 
 



 

 

Figure 9. Attenuation characteristic of  the band-pass filter (BWr=0.5)  
 

 

Figure 10. Group delay characteristic of  the band-pass filter (BWr=0.5)  

 

Figure 11. Attenuation characteristic of  the band-reject filter (BWr=0.5) 
 
 Fig. 10 depicts the group delay of the band-pass filter 
obtained by transformation as before. Note the linear scale 
on the x-axis. The diagram of Fig. 9. was considered to be to 
crowded so we decided to go with a separate drawing for the 
group delay in the band-pass case.  

Finally, Fig. 11. depicts the attenuation characteristic of a 
band-stop filter obtained by transformation of the example 
prototype. 

IV. CONCLUSION 

Availability of a versatile and easily accessible tool for 
graphical presentation of the synthesis results is of crucial 
importance in both: the optimization and the documentation 
phase of the filter design. It was developed so that to enable 
multiple diagrams to be created after the same transfer 
function analysis enabling in the same time the parameters 
of the drawing to be accommodated depending on the users 
needs. A special value of these results is that they may be 
used for mutual verification with the final circuit-synthesis 
results by comparison with the results obtained by circuit or 
logic simulation.  
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